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Abstract: One of the key advantages of a frame is its redundancy. Provided we have a
control on the frame bounds, this redundancy allows to achieve robust reconstruction of a
signal from its frame coefficients that are corrupted by noise, rounding error, or erasures.
We discuss Gabor frames (g,Λ) with generic frame set Λ and random window g and show
that, with high probability, such frames have frame bounds similar to the frame bounds of
randomly generated frames with independent frame vectors.

Introduction
A finite set of vectors Φ = {ϕj}Nj=1 ⊂ CM is called a frame with frame bounds 0 < A ≤ B

if, for any x ∈ CM ,

A||x||22 ≤
N∑
j=1
|〈x, ϕj〉|2 ≤ B||x||22.

We identify a frame Φ with its synthesis matrix Φ, having the frame vectors ϕj as its
columns. Its adjoint Φ∗ is called the analysis matrix of the frame Φ.
The optimal lower and upper frame bounds are given by

A = min
x∈SM−1

N∑
j=1
|〈x, ϕj〉|2 = σ2

min(Φ∗), B = max
x∈SM−1

N∑
j=1
|〈x, ϕj〉|2 = σ2

max(Φ∗).

Problem: Given noisy measurements c = Φ∗x + δ ∈ CN , reconstruct x.
We construct an estimate of x using standard dual frame:

x̃ = (ΦΦ∗)−1Φc = x + (ΦΦ∗)−1Φδ.
Then the reconstruction error is

||x̃− x||22 ≤ ||(ΦΦ∗)−1Φ||22||δ||22 = ||δ||22
σ2

min(Φ∗)
.

Moreover,
||x̃− x||2
||x||2

≤ Cond(Φ∗)
SNR

,

where, Cond(Φ∗) = σmax(Φ∗)
σmin(Φ∗) =

√
B√
A
is the condition number of Φ, and SNR = ||Φ∗x||2

||δ||2 is the
signal to noise ratio.
Goal: Bound σmax(Φ∗), σmin(Φ∗) to ensure robust signal reconstruction.
Extreme singular values are sufficiently well-studied for random matrices with independent
entries [1], [3]. The case of structured random matrices corresponding to application
relevant frames, such as Gabor frames, is not yet fully studied [2].

Definition of Gabor frames
1 Translation (or time shift) by k ∈ ZM , is given by Tkx = (x(m− k))m∈ZM .
2 Modulation (or frequency shift) by ` ∈ ZM is given by M`x =

(
e2πi`m/Mx(m)

)
m∈ZM

.
3 The superposition π(k,`) = M`Tk of translation by k and modulation by ` is a

time-frequency shift operator.
For g ∈ CM \ {0} and Λ ⊂ ZM × ZM , the set of vectors

(g,Λ) = {π(k, `)g}(k,`)∈Λ

is called the Gabor system generated by the window g and the set Λ. A Gabor system which
spans CM is a frame and is referred to as a Gabor frame.

Main results [4]
We show that for any ε ∈ (0,1), a generic subframe (g,Λ) of (g,ZM × ZM) with
|Λ| = O(M 1+ε logM) is has a well-conditioned analysis matrix with high probability.
More precisely, for structured Λ we have
Proposition 1. Let (g,Λ) be a Gabor system with Λ = F × ZM , F ⊂ ZM , F 6= ∅, and
g ∈ CM . Then (g,Λ) is a frame if and only if minm∈ZM{||gFm||2} 6= 0, where gFm is the
restriction of g to the set of coefficients Fm = {m− k}k∈F ⊂ ZM .
Moreover, in this case the optimal lower and upper frame bounds for (g,Λ) are
A = M minm∈ZM{||gFm||22} and B = M maxm∈ZM{||gFm||22}, respectively.
Note: an analogous result is true for the the case when Λ = ZM × F , for some F ⊂ ZM .
In the case of a generic frame set Λ, we have
Theorem 2. Let g be a Steinhaus window and consider a Gabor system (g,Λ).

1 For any Λ ⊂ ZM × ZM and ε ∈ (0,1), with probability at least 1− ε,

σ2
max(Φ∗Λ) ≤ |Λ|

M
+

√
|Λ|
ε

(
1− |Λ|

M 2

)
.

2 Let ε ∈ (0, 1
2] and C > 0 a sufficiently large constant. Let Λ ⊂ ZM ×ZM be a random

set, constructed so that 1{(k,`)∈Λ} ∼ i.i.d. Bernoulli(τ ) for all (k,`) ∈ ZM ×ZM , where
τ = C logM

M 1−ε . Then, with high probability,
|Λ|
M

(1− δ) ≤ σ2
min(Φ∗Λ) ≤ σ2

max(Φ∗Λ) ≤ |Λ|
M

(1 + δ).

Note: the bound in Theorem 2.1 is tight for a full Gabor frame with Λ = ZM × ZM . In the
case when |Λ| = αM 2, for some α ∈ (0,1), the proven bound gives
σ2

max(Φ∗Λ) ≤
(
α +

√
α(1−α)

ε

)
M with probability at least 1− ε, which is similar to the

bound for matrices with independent entries obtained in [1].

Idea of the proof
Let Λ be a general subset of ZM × ZM . Fix any m ∈ N and consider the matrix
H = ΦΛΦ∗Λ −

|Λ|
M IM . Following the idea of [2], we obtain that

P
{
|Λ|
M

(1− δ) ≤ σ2
min(Φ∗Λ) ≤ σ2

max(Φ∗Λ) ≤ |Λ|
M

(1 + δ)
}

= P
{
||H||2 ≤

|Λ|
M
δ

}
= P

{
||H||2m2 >

|Λ|2m

M 2mδ
2m
}
≤ M 2m

|Λ|2m
δ−2mE(||Hm||22) ≤

M 2m

|Λ|2m
δ−2mE(TrH2m).

One can further show that [4]
E (TrHm) =

∑
j1,j2,...,jm∈ZM ,
j1 6=j2 6=···6=jm 6=j1

(k1,`1),...,(km,`m)∈Λ

e
2πi
M

∑m
t=1 `t(jt−jt+1)Ej1...jm

k1...km

,

where

Ej1...jm
k1...km

=
{ 1

Mm , if ∃α ∈ Sm, s.t. jt − kt = jα(t) − kα(t)−1, ∀t ∈ {1, . . . ,m};
0 , otherwise.

This translates the problem of bounding the singular values into a combinatorial problem.

Numerical results
• Steinhaus window g, that is, g(m) = 1√

M
e2πiym and ym ∼ i.i.d. Unif[0,1).

• Λ is chosen at random as described in Theorem 2, with τ = C
M .

Figure 1 – Left: the dependence of the extreme singular values of the analysis matrix Φ∗Λ of a Gabor frame
(g,Λ) on the ambient dimension M ; Right: the distribution of the singular values of Φ∗Λ for the dimensions
M = 100, 150, 200, 250, 300.

Figure 2 – The dependence of the numerically estimated trace expectation M2m

|Λ|2mδ
−2mE(TrH2m) on the

ambient dimension M (horizontal axis) and the parameter C (vertical axis), for a fixed m. Left: Λ is chosen
at random, as described in Theorem 2, with τ = C

M ; Right: Λ = F × {0, 1, . . . , bM2 c}.

The obtained numerical results suggest that
1 In the case when random Λ is constructed as in Theorem 2 with τ = C

M , there exist
constants 0 < k < K not depending on M , such that all the singular values of the
analysis matrix Φ∗Λ are inside the interval

[
k |Λ|M , K

|Λ|
M

]
with high probability.

2 Even in the worst case scenario choice of Λ normalized trace expectation decreases
rapidly with the dimension. This allows to conjecture that Theorem 2 can be further
generalized using the proposed method.

Conclusions and Forthcoming Research
While the presented results discuss the case of a generic, randomly generated, Λ, one of the
main directions for the future research is to evaluate frame bounds of Gabor frames for all
possible frame sets Λ and to investigate their dependencies on the structure of Λ.
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