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Abstract: One of the key advantages of a frame is its redundancy. Provided we have a
control on the frame bounds, this redundancy allows to achieve robust reconstruction of a
signal from its frame coefficients that are corrupted by noise, rounding error, or erasures.
We discuss Gabor frames (g, A) with generic frame set A and random window ¢ and show
that, with high probability, such frames have frame bounds similar to the frame bounds of
randomly generated frames with independent frame vectors.

Introduction

A finite set of vectors & = {¢;};*| C C" is called a frame with frame bounds 0 < A < B
if, for any z € CM,
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We identify a frame ® with its synthesis matrix ¢, having the frame vectors ¢; as its
columns. lts adjoint ®* is called the analysis matrix of the frame .

The optimal lower and upper frame bounds are given by
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Problem: Given noisy measurements ¢ = ®*z + 0 € CCN, reconstruct .

We construct an estimate of x using standard dual frame:
i = (0P*) 'dc =z + (DD*) D).

Then the reconstruction error is
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Moreover,
|z — || - Cond(d*)
|zl — SNR
where, Cond(®*) = (;I;zg)) = \/—\g Is the condition number of ®, and SNR = ”ﬁ;ﬁ!z s the

signal to noise ratio.
Goal: Bound 0, (®*), opmin(P*) to ensure robust signal reconstruction.

Extreme singular values are sufficiently well-studied for random matrices with independent
entries [1], [3]. The case of structured random matrices corresponding to application
relevant frames, such as Gabor frames, is not yet fully studied [2].

Definition of Gabor frames

Translation (or time shift) by k& € Zyy, is given by Tz = (x(m — k)),,.cz. -
Modulation (or frequency shift) by ¢ € Z); is given by M,x = (ezmﬁm/Mx(m))
The superposition 7(k,{) = M/,T}. of translation by & and modulation by £ is a
time-frequency shift operator.

For g € CY \ {0} and A C Zy; x Zyy, the set of vectors

(g, \) = {m(k, 5)9}(/@5)@

is called the Gabor system generated by the window ¢ and the set A. A Gabor system which
spans CV is a frame and is referred to as a Gabor frame.
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Main results [4]

We show that for any € € (0,1), a generic subframe (g, A) of (g, Zy; X Zy) with
Al = O(M'*¢log M) is has a well-conditioned analysis matrix with high probability.

More precisely, for structured A we have

Proposition 1. Let (g, A) be a Gabor system with A = F' X Zy;, ' C Zy;, F # (), and
g € C™. Then (g,\) is a frame if and only if min,,cz, {||gr ||2} # 0, where gr is the
restriction of g to the set of coefficients F),, = {m — k}rcr C Zyy.

Moreover, in this case the optimal lower and upper frame bounds for (g, A) are

A = M min,ez, {|lgr |15} and B = M max,,cz, {||gr |5}, respectively.

Note: an analogous result is true for the the case when A = Z;; X F', for some F' C Z,y.
In the case of a generic frame set A, we have

Theorem 2. Let g be a Steinhaus window and consider a Gabor system (g, A\).
For any A C Zy; X Zy; and € € (0,1), with probability at least 1 — ¢,
\

oty < e 2 (1 1)

Let € € (0, %] and C > 0 a sufficiently large constant. Let A C Z); X Z); be a random
set, constructed so that 1 pepy ~ i.i.d. Bernoulli(7) for all (£,0) € Zy; x Zys, where

€92 Then, with high probability,
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Note: the bound in Theorem 2.1 is tight for a full Gabor frame with A = Z; X Zj;. In the
case when |A| = aM2 for some a € (0,1), the proven bound gives

(@) < (

bound for matrices with mdependent entries obtained in [1].

M with probability at least 1 — ¢, which is similar to the

ldea of the proof

Let A be a general subset of Z;; X Zj;. Fix any m € N and consider the matrix
H = $\d} — ’A‘]M Following the idea of [2], we obtain that
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One can further show that [4]
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where
E. . — 1 if 3 € Sy, st i — Ky = Ja(t) — kaw-1, Yt € {1,... ,m};
72:::%”; 0 , otherwise.

This translates the problem of bounding the singular values into a combinatorial problem.

Numerical results

Steinhaus window g, that is, g(m) = \/Lﬁemym and vy, ~ i.i.d. Unif|0,1).

A is chosen at random as described in Theorem 2, with 7 = %
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Figure 1 — Left: the dependence of the extreme singular values of the analysis matrix ®*% of a Gabor frame

(g, \) on the ambient dimension M; Right: the distribution of the singular values of ®% for the dimensions
M = 100, 150, 200, 250, 300.
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Figure 2 — The dependence of the numerically estimated trace expectation ‘%2;;5 “ME(Tr H™) on the

ambient dimension M (horizontal axis) and the parameter C' (vertical axis), for a fixed m. Left: A is chosen
at random, as described in Theorem 2, with 7 = £ Right: A = F' x {0,1,...,|%]|}.

The obtained numerical results suggest that

In the case when random A is constructed as in Theorem 2 with 7 = M, there exist
constants 0 < k£ < K not depending on M, such that all the singular values of the

analysis matrix ¢, are inside the interval [/{%, K%} with high probability.
Even in the worst case scenario choice of A normalized trace expectation decreases

rapidly with the dimension. This allows to conjecture that Theorem 2 can be further
generalized using the proposed method.

Conclusions and Forthcoming Research

While the presented results discuss the case of a generic, randomly generated, A, one of the
main directions for the future research is to evaluate frame bounds of Gabor frames for all
possible frame sets A and to investigate their dependencies on the structure of A.
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